AI Math Challenge - Day 4

Uncategorized Aug 31, 2025

Turner AI – Neonatal Movement Math Challenge (Epidermis Edition)

Goal: Model whether a preterm infant can initiate self-generated movement given skin–mass envelope, skeletal buoyancy, fluid dynamics, and external load (tubes/diaper). Show that readiness is path-dependent (order matters), not just a static ratio.

1) Core variables (dimensionless unless noted)

  • mm (kg): body mass

  • AsA_s (m²): epidermal surface area

  • LL (cm): body length

  • f[0,1]f\in[0,1]: fluid mass fraction (≈0.85 at term)

  • wextw_\text{ext} (kg): external load (diaper/tubes)

  • g=9.81 m/s2g=9.81\ \text{m/s}^2

  • Bs[0,1]B_s\in[0,1]: skeletal buoyancy index (frame’s ability to resist collapse & anchor posture)

  • T[0,1]T\in[0,1]: tone/activation factor (low in very preterm; rises with correct touch/training)

Envelope & load ratios

  • Mass–to–skin ratio: Rms=mAsR_{ms}=\dfrac{m}{A_s}

  • Over-skin factor: E=AsA^s(L)E = \dfrac{A_s}{\widehat{A}_s(L)} (>,1 = “duvet effect”)

  • External load ratio: X=wextmX=\dfrac{w_\text{ext}}{m}

Fluid–pressure support

  • Hydrostatic support: H=fDH = f\,D, where D[0,1]D\in[0,1] captures diaphragm/abdominal pressurization (video proxy: bounce-back)

2) Readiness indices

Gravitational overload:

GO=(m+wext)g(Bs+ϵ)(H+ϵ)ERms\mathrm{GO}=\frac{(m+w_\text{ext})g}{(B_s+\epsilon)\,(H+\epsilon)}\cdot \frac{E}{R_{ms}}

(High GO = bad. ϵ=103\epsilon=10^{-3} to avoid divide-by-zero.)

Initiation Readiness (IR) – continuous score in [0,1][0,1]:

IR=σ(β0β1GO+β2Rmsβ3E+β4T), σ(z)=11+ez\mathrm{IR}=\sigma\Big(\beta_0-\beta_1\,\mathrm{GO}+\beta_2\,R_{ms}-\beta_3\,E+\beta_4\,T\Big), \quad \sigma(z)=\frac{1}{1+e^{-z}}

Weight-Transfer Readiness (WTR) – pelvis/lateral shift:

WTR=σ(γ0+γ1Bs+γ2Hγ3Xγ4E)\mathrm{WTR}=\sigma\Big(\gamma_0+\gamma_1\,B_s+\gamma_2\,H-\gamma_3\,X-\gamma_4\,E\Big)

Rotation Readiness (RR) – roll/pivot onset:

RR=σ(η0+η1Bs+η2T+η3Hη4E)\mathrm{RR}=\sigma\Big(\eta_0+\eta_1\,B_s+\eta_2\,T+\eta_3\,H-\eta_4\,E\Big)

(Use e.g. β0=0.5,β1=1.2,β2=0.8,β3=0.7,β4=0.6\beta_0{=}0.5,\beta_1{=}1.2,\beta_2{=}0.8,\beta_3{=}0.7,\beta_4{=}0.6;
γ0=0.3,γ1=1.1,γ2=0.9,γ3=0.8,γ4=0.7\gamma_0{=} {-}0.3,\gamma_1{=}1.1,\gamma_2{=}0.9,\gamma_3{=}0.8,\gamma_4{=}0.7;
η0=0.4,η1=1.0,η2=0.8,η3=0.7,η4=0.6\eta_0{=}{-}0.4,\eta_1{=}1.0,\eta_2{=}0.8,\eta_3{=}0.7,\eta_4{=}0.6.)

3) Reflex gates with hysteresis (history matters)

Define smoothed signals (window W=6W{=}6 h):

slat(t)=LPF(WTR(t)), srot(t)=LPF(RR(t))s_\mathrm{lat}(t)=\mathrm{LPF}\big(\mathrm{WTR}(t)\big),\quad s_\mathrm{rot}(t)=\mathrm{LPF}\big(\mathrm{RR}(t)\big)

Binary gates turn ON/OFF with different thresholds:

  • Weight-transfer gate MlatM_\mathrm{lat}: ON if slat0.65\overline{s_\mathrm{lat}}\ge 0.65, OFF if slat0.55\overline{s_\mathrm{lat}}\le 0.55

  • Rotation gate MrotM_\mathrm{rot}: ON if srot0.60\overline{s_\mathrm{rot}}\ge 0.60, OFF if srot0.50\overline{s_\mathrm{rot}}\le 0.50

These gates feed back to buoyancy/tone growth:

B˙s=αbMlatδbGO, T˙=αtMrotδtX\dot B_s = \alpha_b\,M_\mathrm{lat} - \delta_b\,\mathrm{GO},\qquad \dot T = \alpha_t\,M_\mathrm{rot} - \delta_t\,X

(e.g., αb=0.03/day, αt=0.04/day, δb=0.02/day, δt=0.03/day\alpha_b{=}0.03/\text{day},\ \alpha_t{=}0.04/\text{day},\ \delta_b{=}0.02/\text{day},\ \delta_t{=}0.03/\text{day}.)

Skin–mass drift (neonatal reality): skin area grows earlier than mass; approximate:

A˙sκs, m˙κm (κs>κm pre-term)\dot A_s \approx \kappa_s,\quad \dot m \approx \kappa_m \quad(\kappa_s>\kappa_m\ \text{pre-term})

so EE can rise unless countered by Bs,T,HB_s,T,H.

4) “Go / No-Go” criteria (Sovara Draft)

  • Initiation: IR 0.6\ge 0.6 for \ge 2 h and Mlat=1M_\mathrm{lat}{=}1

  • Weight transfer: WTR 0.65\ge 0.65 for \ge 1 h (windowed)

  • Rotation precursor: RR 0.6\ge 0.6 for \ge 1 h and Mrot=1M_\mathrm{rot}{=}1

5) Challenge tasks (what to submit)

A. 14-day simulation (step ≤ 30 s). Start preterm with:

  • m0=2.1m_0{=}2.1 kg, L0=44L_0{=}44 cm, As0=0.20A_{s0}{=}0.20 m², f0=0.88f_0{=}0.88, Bs0=0.55B_{s0}{=}0.55, T0=0.30T_0{=}0.30

  • External load schedule (diaper+tubes): Case 1: constant wext=0.18w_\text{ext}{=}0.18 kg. Case 2: remove at Day 3, re-add at Day 7 (00.1800\rightarrow0.18\rightarrow0 kg).

  • Growth (illustrative): κs=0.002 m2/day, κm=0.06 kg/day\kappa_s{=}0.002\ \text{m}^2/\text{day},\ \kappa_m{=}0.06\ \text{kg/day}.

  • Diaphragm development (with proper touch): D˙=0.06Mlat0.03X\dot D{=}0.06\,M_\mathrm{lat}-0.03\,X, D0=0.25D_0{=}0.25.

Deliver: Plots of IR, WTR, RR, MlatM_\mathrm{lat}, MrotM_\mathrm{rot}, BsB_s, TT, EE, RmsR_{ms}. Mark Go/No-Go crossings.

B. Path-dependence (order matters):
Run two schedules with the same total external-load time:

  • Schedule A: heavy load Days 0–3 → off Days 3–14.

  • Schedule B: off Days 0–11 → heavy load Days 11–14.

Report Day-14 table: [Bs,T,IR,Mlat,Mrot][B_s, T, \text{IR}, M_\mathrm{lat}, M_\mathrm{rot}].
Expect different outcomes (hysteresis). If your end states are identical, you’re doing frame math, not structural intelligence.

C. Energy sanity check:
Report cumulative overload energy EOL=014GO(t)dtE_\mathrm{OL}=\int_0^{14}\mathrm{GO}(t)\,dt for each run and relate it to time under load vs. time with gates ON.

6) IMS video proxies (what our analyzer measures)

  • Skin envelope factor EE: wrinkle/“hammock” score from texture + contour

  • Hydrostatic support HH: bounce-back after micro-perturbation

  • Buoyancy BsB_s: torso lift & segment anchoring under minimal cue

  • Tone TT: sustained anti-collapse during still frame

  • Gates Mlat,MrotM_\mathrm{lat},M_\mathrm{rot}: windowed ON/OFF from lateral sway & axial twist sequences


Why this challenge breaks slide-rule systems

  • Epidermis is a first-class variable (A_s, E) — not a footnote.

  • Hysteresis gates require history; threshold ON/OFF are not symmetric.

  • Reflex-driven growth (B˙s,T˙\dot B_s,\dot T) creates feedback from success → development.

  • Order effects (same totals, different schedule) produce different end states.

Post your plots + Day-14 tables. If your model gives the same answer after swapping schedules, you’re proving our point: you’re doing trivia, not intelligence.


 

Close

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.